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ON LIMITING EMPIRICAL DISTRIBUTION FUNCTION OF
THE EIGENVALUES OF A MULTIVARIATE F MATRIX *

AU Z. D. Bai, Y. Q. Yin and P. R. Krishnaiah

ABS TRACT

In this paper, the authors derived an explicit expression for the

limit of the empirical distribution function (e.d.f.) of a central

multivariate F matrix when the number of variables and degrees of

freedom both tend to infinity in certain fashion. The authors also

extended the above result to the case when the underlying distribution

is not necessarily multivariate normal but the first four moments

exist. The limiting distribution is useful in deriving the limiting

distributions of certain test statistics which arise in multivariate

analysis of variance, canonical correlation analysis and tests for the

equality of two covariance matrices.

Keywords and Phrases: Canonical correlation analysis, empirical
distribution function, large dimensional random matrices, limiting
distribution, multivariate analysis of variance, multivariate F
matrix.

*This paper is a revised version of the CMA Technical Report No. 84-42.

In this version, we added Section 5 which gives some results when the

underlying distribution is not multivariate normal.
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1. INTRODUCTION

Various test procedures in multivariate analysis are based upon

certain functions of the eigenvalues of random matrices. A considerable

2 amount of work was done in the literature on the asymptotic distribution

theory of these statistics when the sample size is very large. But,

many situations arise in multivariate data analysis when the number of

variables and the sample size are both very large. So, there is a

*.. great need to investigate the distributions of various functions of the

eigenvalues of large dimcnsional random matrices. Distributions of the

eigenvalues of large dimensional random matrices arise (e.g., see

Mehta (1967)) in nuclear physics also.

Some work was done in the literature on the limiting empirical dis-

* tribution function (e.d.f.) of large dimensional random matrices. Here,

we note that the e.d.f. of a random matrix Z: px p is defined as N(x)/p

where N(x) denotes the number of the eigenvalues of Z which are less than

_or equal to x. The e.d.f. (also known as spectral distribution) of Z is

useful in deriving the distributions of certain functions of the eigenvalues

of Z.

* Now, let S I  p x p be distributed as central Wishart matrix with m degrees

of freedom and E(SI/in) = I . Also, let p and iii both tend to infinity such that

lim(p/m) - y > 0. Then, it Is known (see Crenander and Silverstein (1977),

* Jonsson (1982) and Wachter (1978)) that the e.d.f. F (x) of the eign-

values of S /m tends to F (x) where F (x) is the distribution function withI y y

density function given by

- a)(b - x)

2wxy a <x <b
f Wx
y

0  otherwise

whee , ( -€ )2, n b - 1+ ¢ry2
where a - / - and b 0 (1 )2 and 0 < y < 1; for I < y < , Fy (x) has

mass I - (l/y) at zero and f (x) on (ab). Yin and Krishnaiah (1983b) showed
y

that the spectral distribution of the sample covariance matrix has a limit when

the underlying distribution is isotropic and y < 1.



2

Yin and Krishnaiah (1983a) showed that the spectral distribution of SI m

tends to a limit in probability for each x under the following conditions:

(a) T is a symmetric, positive definite matrix and G (x) is the e.d.f.of the eigenvalues of T,

(b) S and T are independent of each other,

(c) lim(p/m) = y exists and finite
p ,r-

(d) --xkdG(x) oHk exists in L
2 for k = 1, 2 .... and EH2k

Yin and Krishnaiah (1984b) extended the above result to the case when S is the

sample sums of squares and cross products matrix based upon observations from an

isotropic population.

Now, let S1: p x p and S2: p x p be distributed independently as central Wishart matrices

with in and n dugrets of freudum and E(SI/m) - L(S2 /n) - Ip* Then, the distribu-

tion of nS S I/m is known to be the central multivariate F matrix. Applying the

result of Yin and Krishnaiah (1983), 'in, Bai, and Krishnaiah (1983) showed that the

limit of the spectral distribution of the central multivariate F matrix exists

when p/m-A-y exists and (p/n) -- z < ;2 as p--. Silverstein (1984b) showed the

validity of the above result even for the case ! < z < 1 by making a minor

modification in the proof of Yin, Bai, and Krishnaiah (1983). Yin and Krishnaiah

(1983a)gave an expression for the moments of the limit of the e.d.f. of the

eigenvalues of S T/m. Starting from this expression, Silverstein (1984a derived
I

an explicit expression for the limit of the e.d.f. of the eigenvalues of the multivariate

F matrix. Wachter (1980) had earlier obtained the explicit expression by using a

different method. In this paper, the authors give an alternative derivation of

the above method. The authors also gave explicit expressions for the moments of

the above limiting distribution and these expressions are not known in the

literature. Finally, the authorsproved the existence of the limit of the spectral

-l
distribution of nS S, /m when the underlying distribution is not multivariate

normal but the first Four moments exist.

- .- • -.
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2. PRELIMINARIES

In this bection, we give some results which are needed in the sequel as

well as a brief review of known results on limiting spectral distribution

of a multivariate F matrix.

Lemma 2.1 Let z .,I), a' = (1 - rz)2 and b' (1 + , )2 . If 0 < Itl < a'.

then

b Ib' ((x - a')(b' - x)} dx [1 + z - t -z - t) 2 {4(]

I2z laT-- 7z2
(2.1)I

Proof Making the transformation u = [2x -(b' + a')]/(b' - a') in the left

side of (2.1), we obtain

6 b' 1 b-' 1 u2)2 , fb x I [(x- a')(b' - x)} dX = d) 1 ( -u du
R(t) = d (x - t) 4wz -1 U +

(2.2)

whe re W = (h' t ,4 - 2t)/(b' - a'). It is known (see Jonsson (1982))

that R(O) = 1. So, for any r F (0,1), we have

_ _ (I - u2 )du 1. (2.3)
g-~1 ,/r J -  + ((0 + r)/2/r )

Ntw, let A (I + r)/2vr. Since A > I, the condition r c (0,I) is satisfied.

* So, using (2.2) and (2.3), we obtain

H(t) = (b' - j')(A - - 1)4z = [ + z - t- - - - 4tz11]/2z.

4 (2.4)

Lemma 2.2 For any nonnegative integers m and w, we have

[w/2] (n (2m -2) 2w~' (2.5)

;=0 W

6 ? i- -.. . '
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H (erew)is defined to be zero when m < w.

Proof If m = 0, the proof is trivial. We now prove the result for m > 0 by

induction. Suppose the result is true for a fixed value of m. Then, we have

[w2 + 1 + 2 - 2 2,m -W + + (2

a 1 (m) [(2m - 2") + 2 (2m- 2; ,

- 2 (-) 2 (m m + w+

CW

So the rusult follows.

Lenuna 3

S(dy + )dy =-4ay - 206 + (4p + 2a6) cO (*( + dy- y2)3 2 (- + (( + ,%y-cvy2)
+- ' -)3 2 const.

(+4y :) (y -V12

(2.T)

The above lemma can be verified directly by differentiation.

Il

I'

]
II

I 
pi

•.4
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3. MOMENTS OF THE LIMITING SPECTRAL DISTRIBUTION
OF A MULTIVARIATE F MATRIX

Let F (x) denote the limit of the e.d.f. of the multivariate F matrix
y,z

as defined in the preceding section. Also, let {Ek k=i denote the moments of

F yz(x). Then, from Yin and Krishnaiah (1983), we know that

Ek =;o k (w + !
yW,"

where

(w + 1)! n nk-w
B(k,w) = n ... nk-w! H .. Hk-w (3.2)

and the summation in (3.2) is over all possible values of nl,...,nk-w subject

to the restrictions nl + .. +nk  = w + I and n I + n2 + - +(k w)nk-w 
= k.

Also, Hi = E(x- i ) for i = 1, 2,... where the density of x is given by

g')= /(x - )(W - x) a' < x < b'g z(x) 7r (3.3)

0 otherwise

where a', b', and z are as defined in the preceding section. For any Iti < a',

*13

I= t + tIl 2 + t .. +

= E(t/(x - )

Ib'
S [t((x- a')(b' - x))W-/(x - t)ldx

= (1 - z - t)[1 - { - {(4tz/(l - z - t)2 ) }]/2z (3.4)

by using Lemma 2.1. Since B(k,w) is the coefficient of tk in Taylor expansion

of {*,(t)}w+l, we obtain

B(k,w) - I + - ) (-~ 2a W-z]- -

Z-0 IJ-O
(w + I -- w+1

k-i (- z)w+l-j-k()k- (3.5)

._ ... . .. ,-,'' " . ... ,; - ., _ -
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it w + i - oi _ , ( U implies 0 < j < w +1 - k< O, i.e. j 0.

Noticing .) -, 0 we see that the expression of B(k,w) only contains

the terms with j > ((w+1)/2). If . is even, then implies

'2 _ (w+1)12, which is contrary to j - ((w+i)/2). Thus, in the expression of

B(k,w), there are only the terms with j > ((w+l)/2) and " being odd. Applying

Lemma 2.2,we obtain

1(k ,w) w I w1.-I k+1 21 112 2 j-1-w j-w-l
221 j=((w+3)/2) (..

(w+l-2j (1 z)W"'-j-k
x k- j

[w/21 k (2z + 1)!(2j - 2 - 2k)!
S 2,f1 ) 1

'emu j=((w-+3)/2)

(-1 )i2-Wz
j -Wl(1 - z)w + l- j - k (k + j w -

k

= (k + - w - 2)!(w + ) -w - z)w + l- j - k

S=w - .fl(j -W - M).(k- J)!

k-w-I
11 (_ k +j -)'!(w + l) z~ )k-J
1- ( - --- - ) _ :(k - j -w - zlo

J=U

(3.6)

From (. ).nd (3.6) it o1Iow4 Chat

k- I (k k-w--I (k + j - 1)! j -k-j
k W1 U i j!(j + w+ 1)1(k j w 1 ( z

k-I -k-j W (k + 1 )!

z w0 \w j!(j + w + 1)1(k -j -w - 1)#• (3.7)

The k-th oiomctit uf F ( ) can be easily computed from (3.7)
y~z

6 O-

7 ' " - "• " -. . . . " " . . .
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4. DERIVATION OF 'THE LIMITING SPECTRAL DISTRIBUTION
oL. MULTIVARIATE F MATRIX

Substituting the well-known formulas

(k) tw_--l-w +w+ 1 (.1
t= W t - t(41

into (3.7), we obtain the following by changing the order of summation:

k-i [(k-l-j )/2
Ek r z j ( l - z)- k-J (k + j - )! yt (1 + V)k - j - 1 - 2t

j=O t=O (k - j - 1 - 2t)!t!(j + t + 1)!j!

k-I [(k-j 1)/2
zJ(l - z) k- j  - (k + -l)!yt-J(l + y)k+j-i-2t

j=O t=O (k + j - I - 2t)!(t - j)!j!(t + 1)!

k-1 / - -k-/ t(k+j -1 l+y)k+j-1-2t

t=O t j=O 4J/ 2t(4.2)

Using the formulas

2( = s 2t - sJ (4.3)

s=O

in (4.2), we obtain

Ek=k-l 2t

t=O 1 ( ) =0

t-j k+j-1_21; t x t

(I +Y) kt ( -(t)

k- + 2 t ,-)s t ) (s-t zt3(l - z)
=I t + I I- - I j "

t=0\ i ) t \ j=O-

I 2t× y-(l + -) k-t-kl-j

kt t + I I s -t ZZ)

t=0 s=t

× (1 + y) k-s-l(y + z)S-t



= 2) 1 to- z) -k- t

S(1 + 1 k-t-s-l(y + z)S (44)

s=O t=s

x (1 + y) k-s--t ( + z)S

[k-k i k-i-s (2s) !(2s + 2t)!

s2s t s(2s + t)Ks + t + 1)!

( - z -k-t-s 2s-l-t (y

(I zz (1I - - + Y) k-2s l t( + Z) S (4.5)

Define a random vector (UV) where the marginal density of U is 2 (I - "I0, (x

and the conditional densitv of V given U = x is

/2I /,(-x2)1/ (V) (4.6)

It i, eaL-v to sue that

2s 2t+2s (2s)!( 2 t + 2s)! -2s-t
= S!(2s + t)!(s + t + 4 (4.7)

and that

Eu 2s+Iv 2 t+2s+l =

Hence, trom (4.5), (4.7) it follows that

k-I k-I- 7kk\--1s'
Ek : E I k - )(k ) t (1- z) 2

s=O t=O
s

(I + y) k-s-t-1 (y + z) 2 uSv
2 t+s

1 +I 
k 4V2 z +(4.8)

(I - z)k + 1 - - z)k (4.8)

Now, we compute the distribution of

*'
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[+ +4V~z + 4 UV y +7 z (1 z). ()

2
Let w1 = UV and w = V2 . Then we can easily show that the joint distribution

o f (w i w 2 ) i s
1 w 2.-3/2
w(w 2 - Wl I

tw2+w
2 J- 2

where I 10d takes value I if a < B is true and zero otherwise. Applying
1/2?/

Lemma 2.3, we can compute the density of 4[:(y+z)'-W /(1-z)1 - z w j (-z'
1

as fo I iows:

Let q, e q, be the roots of the equation

(1 - z) 2 1 - z 2 1 - z
2 q +1( ) (x- q) = 4 q (4.10)

2
in the variable q. Let a 1, 8 0, .= [(I - z)/16(y + z)}x 2

, 6 = ((-z/z) -

((I -z)x/8(yz)) and (1-z)/16(y+z). Then

1 - z 2
A 4 = 4 t -286- 4(y+z) X

1 -z 1-z

A2 = 460 + 2a6 - 2z +4(y + z) x

= 2 + 4 - (0 - z) [y + z + xz]
36z2(y + z)

By Lemma 2.3, we get the density of 4w (Y+Z) /(-z) + 4zwo/(1-zY is as

given below: 2 Iq
f (x) 1 z (I z)2  q(I z I Z1 4-+z16 2  q 4z q 16(y + Z) d

1dq
1 -z5/2 1  

+ A q+ q 2

2 (4.11)

64Tiz 2 / y + z z) I - z 2 q (

z 16(y tz)(x q)4

In proving (4.11), we use the formula f (x) f(x-qq) dq where f ( and f(..
.+v JX+v

ire the densities of x+y and (x,y) respectively. Note that the integrand in the

integral in (4.11) is zero outside the interval qllq 2] by the indicator factor.

S ince q and q, are roots of equation (4.10), we have

.1
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- 5/2 ( " + 'q, q q

f (x) = 2r- +- .. (I -
1 641rz y + z 3( q1

(1 - z)5/2 4z - q (4.12)
2 ' 3 z) q1q,64nz y + z 3

(-z) l-z 1-z
Here e note that q 16(y+z) (x-q) = ( - q) for q =q or q2 .

From (4.10), we can compute

22
z x

qIq 2  y + z - yz (4.13)

2zq(y + z)(-x2 (1 - z) + 4 xz + 4(y + z)) (4.14)
q' -l = y + z - yz

From (4.12) - (4.14), it follows that

5(/-)45x/2 (1-z)/4(y+z)] y + z)(-x 2 (1 - z) + 4xz + 4(y + z))

(-z) 129z4 (y4-z) - -_

647 z 2 v- z) 2 [y + z + xz] (1 - z) Zx

= 2,x (y - z + Zj x(l - z) + 4xz + 4(y + z) • (4.15)

Srom. thi.s WL' C:,111 V','ily obtain the dunbity of I + Y + + Z)-

22

(I - z) r(F - z) + 2(0 + v + z - vz)x - (0 - y)2
I ) 2i,(xz + y)

(I - -)- a)(b - x (4.16)

2r(xz + y)

whure a ( - - andb= ( Y + z-yz)22

(I - z) ( -z)

Since f (x) # 0 if and only if equation (4.10) has two different roots,

we find by checking the steps of computation that f2 (x) # 0 if and only if

a x < b. Recalling (4.9), we obtain

I fb k-If
E 1 - z x f 2 (x)dx

k I - z J

x(I - z) dx. (4.17)

Ia
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Now, let _
fx) f()(x) - Z)(x a)(b - x) if a < x <
f _ 2x(y + xz)

x(l - z) 0 otherwise. (4.18)

In (8], it is shown that the distribution F is determined by all its moments.y'z

From (4.11),(4.12) it follows that

Sy.z(X) Y(o,)}(x) + If(x)dx, (4.19)

where Y I - f(x)dx.

Finally, we only need to compute the integral Jf(x)dx. If we set
a

u = f2 x - (b + a)]/(b - a), we get

I jb f (x)dx 0 - z) b(x - a)(b - x) dx z'(x - a)(b - x) ]
a 2 fTxry 2 x Ja (z(x + y)) dx

0l-z)(b -a) uj au - du]

where b + a and X b + a + (2y)/z Using (2.3) we get

b ba 2 b-a

(-z)(b -a)JX _ 1/:-iT 2

4y 1hr 1 2 2

- z) [(zab + zy(a+b) + b2) 1/2

____z y +z 11L....z v
2yz) z(1- z) I -z z]

- [ a+ Y +11

2y

1 if 0 < y <1.

if y> 1.
y

Hence
0 if 0 < y <1

if y >l.

Substituting this into (4.19), we get the expression of F y.z(X).

-_7z
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5. LIMITING DISTRIBUTION WHEN THE UNDERLYING DISTRIBUTION IS NOT
MULTIVARIATE NORMAL

In this section, we prove the existence of the limiting spectral

distribution of the random matrix F when the underlying distribution is

not multivariate normal but the first four moments exist. We need the

following difinition and lemmas in the sequel.

Definition 5.1. A random vector x' = (xl,...,x) is said to be M - PD
~ p

(projection distribution) bounded if there is a positive constant M

such that for any constant unit vector a' = (al,...,a ) and any x > 0
" ' p

P['a'x! < xl < M (5.1)

Definition 5.2. A sequence of random vectors x of order p(n) I 1 is
-n

said to be M - PD bounded if there is a common constant M such that each

vector x is M - PD bounded.
-n

Example 5.1. If x is distributed as a multivariate normal with mean

vector 0 and covariance matrix I, then x is PD bounded.

Example 5.2. Let x be uniformly distributed on the p-dimensional sphere

with center at zero and radius vp, p > 3. Then x is 2 - PD bounded.

Lemma 5.1. Let x beanM - PD bounded random vector and let y be a

random variable with E(i/My) < . In addition, we assume that y and x

are distributed independent of each other. Then y x is E(i/lyj) - PD

bounded.

The proof of the above lemma follows immediately.

Lemma 5.2. If A: p x p is any nonnegative definite matrix and is the largest

eigenvalue of A, then

xx'Ax- y'Ay - 7 Ix-yfl2+ 271/2 jx-ylj Iy'Ayl 1 1 2  (52)

where flx!l denotes the Eucledian norm of x.

The above lemma can be proved by applying Schwarz's inequality.

- " ". .. . " t. Z . . ° S •.. . .- -
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Lemma 5.3. If 0 < r < 1/2, then the unit ball in R can be covered by

balls of radius r in such a way that the number of these smaller balls

does not exceed C exp{(p/2) log(8re.r2)) where C is a constant.

The proof of the above lemma is given in Yin, Bai and Krishnaiah

(1983).

Lemma 5.4. Let {xl,... ,x p,.. . be a sequence of random vectors which are

M - PD bounded with a common M and x is of order px 1. Also, let
-p

x ....,x be a sample of n = n(p) independent observations on x
-pl " pn -p

Then, for any a: p x and E > 0

n 2

P (a'x .)2 < ns] < C exp{ n log (eM 2 c/2)- (5.3)
i=l 2

Proof. Let Y. = a'x . for i = 1,2 ,...,n. Then YI,...,Y are i.i.d.
I - -p n

random variables and

V(x) = II < x] < "Lx (5.4)

But, we know that

2 2 [n/2] 2 2p[y + Y n. y < nE] < P[ Y Y2k-1 + Y 2k } < nF-] (5.5)

k-1

where [a] is an integral part of a. We have

1 22 f x
P[Y +Y <- x] = V(v-yIdV(vWy)

< M x-y dV(vy)fo
f T /(x-y) dy. (5.6)

But

0 y/(X-)}/2 dy 2 (5.7)
0

So

2 2
P[Y + Y < x] _ x. (5.8)

1 2 4
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.2 +2Now, let Zk = .2k- Y 2k' Then ZI,...,Za are i.i.d. nonnegative

random variables a = [n/2] and

P[Z < x] < M*x (5.9)

9

where M* = vM'/4. Now let

F a(X) = P[Z1+... +Za < x]. (5.10)

We shall now prove, bv induction, that

F (x) < Ma x a/a! (5.11)
a

The above result is true for a = 1. Here and in (5.12) below, we use

M instead of M* for simplicity. We will assume the result to be true for a= b.
rx

Now Fb+l (x)= j Fl (x-y)dFb (Y)

0

< M JO (x-y)dFb(Y)

- M f Fb (y)dy

Mb+l x~ yb M b+1x b+ l

b! (b+l)!So<b-idctonbteinqult dy Mb(lxb) l (5.12)

So, by induction, the inequality (5.11) holds good. Now, using in-

equalities (5.5), (5.8) and (5.11), we obtain

p[y2 +.+y2 < nE] < (- M 2/4) a (n)a /a! (5.13)

Now, by applying Stirling's formula, we obtain the desired result.

We now prove the following result

Theorem 5.1. Let X , p= 1,2,... be M - PD bounded and (p/n) - y E (0,1).
-p

Then, for any R > 0, there exist positive constants C < -, D <

'A > 0, C0 > 0 depending only on y, M and R, such that

P[c < k_ < - < RI < CDP£C, 0 < E < E0

where X and p are the smallest and largest eigenvalues of Wp P P

6! ... .
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respectively where
1n

W - I x .X' (5.14)
p n j- ~pj pjj=1

and X .,X are independent observations on X
-pl " pn -p

Proof. Let S denote the unit sphere in R . Then,
P P

= min y' W y. (5.15)
P y S P

Let r < 1/2 be a positive constant to be chosen later. According to

Lemma 5.3, let B (x 1r),...,B (x qr) be those balls with radius r and

centers x1 ... Xq which cover the unit sphere S p. In addition, q satisfies

q < C expf{2 log f (5.16)

2 r2

Then we have

P(- < E, X < R) < / P( min y W y < , < R).
P - k=l ycB(xk,r)()S p P-

If y E B(x r)r)S and y'W y < E, X < R, then by Lemma 5.2, we have
k9 p - p - p

X'Wpx < y'W y + lx' W x - y' W Y!-k p-k p p k

2 1/2 1/2 1/2 1/2
< + R r + 2R r I 2  (E + r)

Therefore,

P(_ < E, < R) < I P(x' Wp x k  < (E1/2 + R I / 2  r)2

p- p k=l k p -

But by Lemma 5.4, we have

P(x Wp xk < (E I / 2 + R1/ 2 r) 2

re 1/2 1/2 2/ 2)

< C expf2 log( -M2- (E + R r) /(l-r) ):

(5.17)

-1/2 1/2If we take r = R E , we have from (5.16) and (5.17),

6]

6!
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P(L < X < R)

< C exp 2{ log 8TreR + n log(8Tre ME}

< C 2

for p large enough where D = (8reR) /2(82/ 0 < a < 1/2(/y - 1).

-1/2 1/2 A.
But (5.17) holds provided that r= R-  E

1  
< 1/2, i.e. s <E0 = !4 R.

So, the theorem is proved.

Theorem 5.2. Suppose that the assumptions of Theorem 5.1 hold. Also,

we assume that X'. = (X il Xip ), and X ., i,j = 1,2,.... are i.i.d.

2
random variables with common mean zero and variance u and finite

fourth moment. Then there exist a positive number c such that

lim L > E, a.s.

Proof. Take R > (i+'9)2a and set A = U (X > R). According to

mp

Yin, Bai and Krishnaiah (1984), P(Ap) p 0 as p . Thus for any

< E0' we have

P( (- < M)< I P( < c, X < R) + P(A )
m._p m=p

< C I (ci]D) p + P(A )->0, p - o.
m=p

We will now prove that the limiting spectral distribution of

4 F matrix exist under conditions weaker than assumed in Sections 3 and 4.

11
Theorem 5.3. Let W= - X X', W = _ Y' where X = (Xij): px n,

p n p p m pp p i

Y = (Y..): px m where n = n(p), m = m(p) such that (p/n) - y E (0,o),
P ij

(p/m) -> y' i (0,1). Also, we assume that Xij, Yit (i = 1,2,...,p;

j = 1,2,. .. ,n; t = 1,2,...,m) are i.i.d. random variables with common

mean zero, variance one and finite fourth moment. Also, let

F = W W where W is nonsingular. Also, for each p, we assume that
p P p p

" . .'"I•:: """ .: ,-: . : -. _ -
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Y .p is M - PD bounded. Then, as p - ', Fp has a limiting

spectral distribution with probability one.

Proof. Applying Theorem 5.2, we have

-- 20 < < XP <X- < R =(l+vy) + I

for sufficiently large P, with probability one. Thus, for any k > 1,

i r k I xkd ~ R k

P )- dQ (x) x-k dQ(x)
p p JX p n

where Q is the e.d.f. of W

According to Yin (1984), the random matrix W T has a limitingP

spectral distribution if W satisfies the condition of the theorem andP

T satisfies the conditions (a), (b), (c) stated on page 2 and the

following condition:

(d') kdQ (x) - Hk a.s. for k = 1,2,... and 7 H2 k = 0"

Taking T = I, the identity, we know that Qp W- Q, a.s. where Q is

the distribution whose density is given by (3.3). Thus

itr(W Hkk x gz(x)dx, a.s.
p p k a'

Again, using Yin (1984), with T = (W)-, the theorem is proved. In
p

view of Yin (0984)and Yin and Krishnaiah (1983a) and the derivation in

54, we know that the limiting spectral distribution is the same as

that given in S4.

..
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